28th Spanish Mathematical Olympiad Problems 1992



A1.  Find the smallest positive integer N which is a multiple of 83 and is such that N2 has exactly 63 positive divisors.

A2.  Given two circles (neither inside the other) with different radii, a line L, and k > 0, show how to construct a line L' parallel to L so that L intersects the two circles in chords with total length k.


A3.  a, b, c, d are positive integers such that (a+b)2 + 2a + b = (c+d)2 + 2c + d. Show that a = c and b = d. Show that the same is true if a, b, c, d satisfy (a+b)2 + 3a + b = (c+d)2 + 3c + d. But show that there exist a, b, c, d such that (a+b)2 + 4a + b = (c+d)2 + 4c + d, but a ≠ c and b ≠ d.

B1.  Show that there are infinitely many primes in the arithmetic progression 3, 7, 11, 15, ... .

B2.  Given the triangle ABC, show how to find geometrically the point P such that ∠PAB = ∠PBC = ∠PCA. Express this angle in terms of ∠A, ∠B, ∠C using trigonometric functions.

B3.  For each positive integer n let S(n) be the set of complex numbers z such that |z| = 1 and (z + 1/z)n = 2n-1(zn + 1/zn). Find S(2), S(3), S(4). Find an upper bound for |S(n)| for n ≥ 5.


Fun Math Games for Kids

 
Return to top of page Copyright © 2010 Copyright 2010 (C) CoolMath4Kids - Cool Math 4 Kids - Cool Math Games 4 Kids - Coolmath4kids Bloxorz - Coolmath-4kids - Math games, Fun Math Lessons, Puzzles and Brain Benders, Flash Cards for Addition, Subtration, Multiplication, Fraction, Division - Cool Math 4 Kids - Math Games, Math Puzzles, Math Lessons - Cool Math 4 Kids Math Lessones - 4KidsMathGames - CoolMath Games4Kids coolmath4kids.info. All right reseved.