Indian National Mathematics Olympiad 1996 Problems



Indian National Mathematics Olympiad 1997 Problems

1.  ABCD is a parallelogram. A line through C does not pass through the interior of ABCD and meets the lines AB, AD at E, F respectively. Show that AC2 + CE·CF = AB·AE + AD·AF.


2.  Show that there do not exist positive integers m, n such that m/n + (n+1)/m = 4.

3.  a, b, c are distinct reals such that a + 1/b = b + 1/c = c + 1/a = t for some real t. Show that t = -abc.

4.  In a unit square, 100 segments are drawn from the center to the perimeter, dividing the square into 100 parts. If all parts have equal perimeter p, show that 1.4 < p < 1.5.

5.  Find the number of 4 x 4 arrays with entries from {0, 1, 2, 3} such that the sum of each row is divisible by 4, and the sum of each column is divisible by 4.

6.  a, b are positive reals such that the cubic x3 - ax + b = 0 has all its roots real. α is the root with smallest absolute value. Show that b/a < α ≤ 3b/2a.







Fun Math Games for Kids

 
Return to top of page Copyright © 2010 Copyright 2010 (C) CoolMath4Kids - Cool Math 4 Kids - Cool Math Games 4 Kids - Coolmath4kids Bloxorz - Coolmath-4kids - Math games, Fun Math Lessons, Puzzles and Brain Benders, Flash Cards for Addition, Subtration, Multiplication, Fraction, Division - Cool Math 4 Kids - Math Games, Math Puzzles, Math Lessons - Cool Math 4 Kids Math Lessones - 4KidsMathGames - CoolMath Games4Kids coolmath4kids.info. All right reseved.