21st Vietnamese Mathematical Olympiad 1983 Problems



21st Vietnamese Mathematical Olympiad 1983 Problems

 A1.  For which positive integers m, n with n > 1 does 2n - 1 divides 2m + 1?
A2.  (1) Show that (sin x + cos x) √2 ≥ 2 sin(2x)1/4 for all 0 ≤ x ≤ π/2.
(2) Find all x such that 0 < x < π and 1 + 2 cot(2x)/cot x ≥ tan(2x)/tan x.


A3.  P is a variable point inside the triangle ABC. D, E, F are the feet of the perpendiculars from P to the sides of the triangles. FInd the locus of P such that the area of DEF is constant. 

B1.  For which n can we find n different odd positive integers such that the sum of their reciprocals is 1? 

B2.  Let sn = 1/((2n-1)2n) + 2/((2n-3)(2n-1)) + 3/((2n-5)(2n-2)) + 4/((2n-7)(2n-3) + ... + n/(1(n+1)) and tn = 1/1 + 1/2 + 1/3 + ... + 1/n. Which is larger? 

B3.  ABCD is a tetrahedron with AB = CD. A variable plane intersects the tetrahedron in a quadrilateral. Find the positions of the plane which minimise the perimeter of the quadrilateral. Find the locus of the centroid for those quadrilaterals with minimum perimeter.



Fun Math Games for Kids

 
Return to top of page Copyright © 2010 Copyright 2010 (C) CoolMath4Kids - Cool Math 4 Kids - Cool Math Games 4 Kids - Coolmath4kids Bloxorz - Coolmath-4kids - Math games, Fun Math Lessons, Puzzles and Brain Benders, Flash Cards for Addition, Subtration, Multiplication, Fraction, Division - Cool Math 4 Kids - Math Games, Math Puzzles, Math Lessons - Cool Math 4 Kids Math Lessones - 4KidsMathGames - CoolMath Games4Kids coolmath4kids.info. All right reseved.