4th Vietnam Mathematical Olympiad 1965 Problems



4th Vietnam Mathematical Olympiad 1965 Problems


1.  At time t = 0, a lion L is standing at point O and a horse H is at point A running with speed v perpendicular to OA. The speed and direction of the horse does not change. The lion's strategy is to run with constant speed u at an angle 0 < φ < π/2 to the line LH. What is the condition on u and v for this strategy to result in the lion catching the horse? If the lion does not catch the horse, how close does he get? What is the choice of φ required to minimise this distance?


2.  AB and CD are two fixed parallel chords of the circle S. M is a variable point on the circle. Q is the intersection of the lines MD and AB. X is the circumcenter of the triangle MCQ. Find the locus of X. What happens to X as M tends to (1) D, (2) C? Find a point E outside the plane of S such that the circumcenter of the tetrahedron MCQE has the same locus as X.
3.  m an n are fixed positive integers and k is a fixed positive real. Show that the minimum value of x1m + x2m + x3m + ... + xnm for real xi satisfying x1 + x2 + ... + xn = k occurs at x1 = x2 = ... = xn

Source: Nguyễn Thị Lan Phương, http://www.kidsmathbooks.com


Fun Math Games for Kids

 
Return to top of page Copyright © 2010 Copyright 2010 (C) CoolMath4Kids - Cool Math 4 Kids - Cool Math Games 4 Kids - Coolmath4kids Bloxorz - Coolmath-4kids - Math games, Fun Math Lessons, Puzzles and Brain Benders, Flash Cards for Addition, Subtration, Multiplication, Fraction, Division - Cool Math 4 Kids - Math Games, Math Puzzles, Math Lessons - Cool Math 4 Kids Math Lessones - 4KidsMathGames - CoolMath Games4Kids coolmath4kids.info. All right reseved.